Identifying network structure similarity using spectral graph theory
نویسندگان
چکیده
منابع مشابه
Identifying network structure similarity using spectral graph theory
Most real networks are too large or they are not available for real time analysis. Therefore, in practice, decisions are made based on partial information about the ground truth network. It is of great interest to have metrics to determine if an inferred network (the partial information network) is similar to the ground truth. In this paper we develop a test for similarity between the inferred ...
متن کاملDiscovering genetic ancestry using spectral graph theory.
As one approach to uncovering the genetic underpinnings of complex disease, individuals are measured at a large number of genetic variants (usually SNPs) across the genome and these SNP genotypes are assessed for association with disease status. We propose a new statistical method called Spectral-GEM for the analysis of genome-wide association studies; the goal of Spectral-GEM is to quantify th...
متن کاملAlgorithm Design Using Spectral Graph Theory
Spectral graph theory is the interplay between linear algebra and combinatorial graph theory. Laplace’s equation and its discrete form, the Laplacian matrix, appear ubiquitously in mathematical physics. Due to the recent discovery of very fast solvers for these equations, they are also becoming increasingly useful in combinatorial optimization, computer vision, computer graphics, and machine le...
متن کاملClustering Blogs Using Document Context Similarity and Spectral Graph Partitioning
Semantic-based document clustering has been a challenging problem over the past few years and its execution depends on modeling the underlying content and its similarity metrics. Existing metrics evaluate pair wise text similarity based on text content, which is referred as content similarity. The performances of these measures are based on co-occurrences, and ignore the semantics among words. ...
متن کاملSpectral graph theory
With every graph (or digraph) one can associate several different matrices. We have already seen the vertex-edge incidence matrix, the Laplacian and the adjacency matrix of a graph. Here we shall concentrate mainly on the adjacency matrix of (undirected) graphs, and also discuss briefly the Laplacian. We shall show that spectral properies (the eigenvalues and eigenvectors) of these matrices pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Network Science
سال: 2018
ISSN: 2364-8228
DOI: 10.1007/s41109-017-0042-3